Organic Cation Transporter 1 Is Responsible for Hepatocellular Uptake of the Tyrosine Kinase Inhibitor Pazopanib.

نویسندگان

  • Waleed Elsayed Ahmed Ellawatty
  • Yusuke Masuo
  • Ken-Ichi Fujita
  • Erina Yamazaki
  • Hiroo Ishida
  • Hiroshi Arakawa
  • Noritaka Nakamichi
  • Ramadan Abdelwahed
  • Yasutsuna Sasaki
  • Yukio Kato
چکیده

Pazopanib is an orally active tyrosine kinase inhibitor that exhibits hepatotoxicity in some patients. Despite the clinical importance of its hepatic distribution, the transporter(s) responsible for hepatic uptake of pazopanib in humans remain undetermined. To characterize its hepatic uptake mechanism, we screened the effects of several transporter inhibitors, including tetrapentylammonium (TPeA) for organic cation transporters (OCTs) and cyclosporin A (CsA) for organic anion-transporting polypeptides (OATPs), on both plasma disappearance and hepatic distribution of pazopanib in mice after its i.v. administration. Among the inhibitors, TPeA largely reduced hepatic distribution and plasma clearance of pazopanib, whereas CsA showed only partial reduction. Pazopanib uptake by isolated mouse hepatocytes was similarly reduced by these inhibitors, suggesting that OCTs play a major role in the overall hepatic uptake of pazopanib in mice. In human embryonic kidney cell line HEK293 cells stably transfected with human OCT1, pazopanib uptake was significantly higher than that in vector-transfected cells. Moreover, pazopanib uptake by OCT1 became saturated and was inhibited by TPeA, but not by CsA, confirming that pazopanib is also a substrate of human OCT1. Importantly, OCT1-mediated uptake of a typical OCT1 substrate metformin was inhibited by pazopanib with an IC50 value of 0.253 µM, indicating that pazopanib has the potential for clinically relevant inhibition of human OCT1. Finally, pazopanib was taken up by cryopreserved human pooled hepatocytes in a time-dependent manner, and this uptake was largely reduced by TPeA but only partially reduced by CsA. Thus, the present findings suggest that OCT1 is responsible for hepatocellular uptake of pazopanib.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dmd048181 1179..1186

Sorafenib is an orally active tyrosine kinase inhibitor used in the treatment of renal and hepatocellular carcinoma. This study was designed to establish whether transport proteins are involved in the hepatic uptake of sorafenib and to determine the extent of biliary excretion of sorafenib and its metabolites in human hepatocytes. Initial uptake was assessed in freshly isolated, suspended human...

متن کامل

Sorafenib hepatobiliary disposition: mechanisms of hepatic uptake and disposition of generated metabolites.

Sorafenib is an orally active tyrosine kinase inhibitor used in the treatment of renal and hepatocellular carcinoma. This study was designed to establish whether transport proteins are involved in the hepatic uptake of sorafenib and to determine the extent of biliary excretion of sorafenib and its metabolites in human hepatocytes. Initial uptake was assessed in freshly isolated, suspended human...

متن کامل

Dmd059832 2033..2040

Targeted chemotherapy for hepatocellular carcinoma (HCC) is impaired by intrinsic and/or acquired drug resistance. Because drugs used in HCC therapy (e.g., anthracyclines or the tyrosine kinase inhibitor sorafenib) are substrates of uptake and/or efflux transporters, variable expression of these transporters at the plasma membrane of tumor cells may contribute to drug resistance and subsequent ...

متن کامل

Differential expression of drug uptake and efflux transporters in Japanese patients with hepatocellular carcinoma.

Targeted chemotherapy for hepatocellular carcinoma (HCC) is impaired by intrinsic and/or acquired drug resistance. Because drugs used in HCC therapy (e.g., anthracyclines or the tyrosine kinase inhibitor sorafenib) are substrates of uptake and/or efflux transporters, variable expression of these transporters at the plasma membrane of tumor cells may contribute to drug resistance and subsequent ...

متن کامل

Active transport of imatinib into and out of cells: implications for drug resistance.

Imatinib is a tyrosine kinase inhibitor that is effective in the treatment of chronic myeloid leukemia (CML). Not all patients achieve cytogenetic response. Some patients even lose the initial cytogenetic response. In this study, we investigated the active cellular transport of imatinib to gain a better understanding of the possible mechanisms of imatinib resistance. We used the leukemic cell l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 46 1  شماره 

صفحات  -

تاریخ انتشار 2018